Suppose R is a system satisfying all the conditions for a ring with unit element, with the possible exception of a + b = b + a. Prove that the axiom a + b = b + a must hold in R and that R is thus a ring.  
  
PROOF 
  
Let R be as stated above and let a and b be arbitrary members of R.  
  
a + a + b + b   
=  a(1) + a(1) + b(1) + b(1)   (as R has unit element 1) 
=  a(1 + 1) + b(1 + 1)            (by left distributivity) 
=  (a + b) (1 + 1)                   (by right distributivity) 
=  (a + b)1  + (a + b)1            (by left distributivity) 
=  a + b + a + b                     (as 1 is the unit element). 
  
We've established that a + a + b + b = a + b + a + b. 
  
Now, since (R, +) is a group, we may cancel the leading a from each side and the trailing b from each side (Lemma 2.3.2) to obtain 
  
a + b = b +a. 
  
Thus is it established that commutativity holds in (R, +). Since R satisfies all the other axioms of a ring,  R is a ring. 
  
  
  
  
a+b + a+b 
= (a+b)1 + (a+b)1       ( since R has unit element 1) 
= (a+b)(1+1)               ( by left dist.) 
= a(1+1) + b(1+1)       ( by right dist.) 
= a(1) +a(1) + b(1) +b(1)   (by left dist.) 
= a+a+b+b                        
  
From a + b + a + b = a + a + b + b we obtain b +  
  
  
  
b) Suppose that R satisfies the ring axioms with the possible exception of a+b = b+a. Further suppose 
  
R= {0} or ∃c≠0 ∈ R not a zero divisor.  *  (i.e. call this property *). 
  
We'll show a+b= b+a holds ∀ a,b ∈ R. (Thus R is a ring.) 
  
Case: R = {0}. Then a+b = 0+0 = b+a. 
  
Case: R ≠ {0}. Then, ∃c≠0 ∈ R with cx≠0, ∀x≠0 ∈ R. 
  
Further...  cx = cy → c(x-y) = 0 --> x-y = 0 --> x=y. 
i.e. c, as a factor, can be canceled. 
  
Now ∀a,b ∈ R... 
cb + ca +cb + ca 
=  c(b+a) + c(b+a)       (by l. dist.) 
=  (c + c)(b+a)             (by r. dist.) 
=  (c+c)b + (c+c)a        (by l. dist.) 
=  cb +cb +ca +ca        (by r. dist.) 
  
→ ca + cb = cb + ca   (by cancel. prop of +). 
→  c(a+b) = c(b+a)    (by left dist.) 
→ a+b = b+a  (by cancelation prop. of c). 
  
  
Corollary: Let 1∈R and R satisfy the ring axioms, 
with the possible exception of a+b = b+a. 
Then  a+b= b+a holds in R.  
  
Case:  R = {0}. Then  *  holds.  (Note: here 1 = 0.) 
  
Case R ≠ {0}.  Then 1≠0 and 1 is never a zero divisor (because 1x = 0 --> x = 0), so again  * holds. 
  
Thus a+b = b+a , ∀ a,b ∈ R. 
  
Note: We can't replace a+b = b+a by *. 
For example non trivial rings with trivial multiplication are  commutative for + but don't satisfy *. 
  
So axioms with * --> Ring   but Ring -/-> axioms with *. 
  
  
  
  
  
  
   |